www.akm.ruВ Московском государственном техническом университете (МГТУ) им. Н.Э.Баумана созданы первые в мире микропроцессор и суперкомпьютер, в которых на аппаратном уровне реализован набор команд дискретной...
sdelanounas.ru
В ММГТУ им. Н.Э.Баумана созданы специализированный микропроцессор Леонард (Эйлер) и суперкомпьютер на его основе, в которых на аппаратном уровне реализован набор команд дискретной математики DISC (Discrete Mathematics Instruction Set computer). Суперкомпьютер Тераграф предназначен для хранения и обработки графов сверхбольшой размерности и будет применяться для моделирования биологических систем, анализа финансовых потоков в режиме реального времени, для хранения знаний в системах искусственного интеллекта и в других прикладных задачах.
микропроцессор Леонард содержит 24 специализированных гетерогенных ядра DISC Lnh64.
Микропроцессор Леонард занимает в 200 раз меньше ресурсов кристалла, чем один микропроцессор семейства Intel Xeon, потребляя при этом в 10 раз меньше энергии. При сравнительно малой тактовой частоте порядка 200 МГц производительность микропроцессора Леонард существенно превосходит производительность микропроцессоров семейства Intel Xeon (3 ГГц). Это достигается за счет параллелизма при обработке сложных моделей данных, что позволяет ему обрабатывать до 120 миллионов вершин графов в секунду.
На основе многоядерных микропроцессоров Леонард ученые МГТУ им. Баумана построили суперкомпьютер Тераграф. Он способен обрабатывать графы сверхбольшой размерности до одного триллиона вершин (10 в 12-й степени).
«Набор команд нашего процессора состоит из таких действий, как добавление элементов в множество, поиск во множестве, пересечение множеств, поиск ближайшего, и ряда других операций. Мы создали процессорное устройство, которое оперирует огромными множествами, например, содержащими миллиарды числовых ключей. И с помощью одной-единственной команды пересечения мы, к примеру, можем создать новое множество, являющееся результатом пересечения двух исходных множеств», — рассказывает главный разработчик процессора, доцент кафедры Компьютерные системы и сети МГТУ им. Баумана Алексей Попов.
Благодаря способности сохранять информацию о различных объектах и явлениях и учитывать связи между ними, графы знаний могут использоваться при анализе больших данных в биоинформатике, медицине, системах безопасности городов, компьютерных сетях, финансовом секторе, при контроле сложного промышленного производства, для анализа информации социальных сетей и во многих других областях.
большинство вычислительных задач являются дискретными по своей сути, то есть действительно требуют обработки множеств чисел. Это многочисленные задачи оптимизации, задачи на графах, задачи машинного обучения. Конечно, арифметическая обработка, например, сравнение чисел, также важна, но она составляет лишь малую часть действий в алгоритмах оптимизации. Основное же время современные вычислительные системы тратят на поиск информации, перебор элементов множеств и тому подобные действия.
*******************
молодцы